
Compiler-Inserted Fault Tolerance
for Message Passing Applications

Dan Marques, Keshav Pingali,
Paul Stodghill, Greg Bronevetsky

Cornell University

Slides available at: www.cs.cornell.edu/marques

Fault tolerance

n Fault tolerance comes in different
flavors
n Mission-critical systems: (eg) air

traffic control system
n No down-time, fail-over, redundancy

n Computational applications
n Restart after failure, minimizing lost work
n Guarantee progress

Fault tolerance strategies

Checkpointing Message-logging

uncoordinated

non-blocking blocking

pessimistic

optimistic

causal

coordinated

State saving

Application-level

System-level

Our experience/beliefs:

n Message-logging does not work well for
communication-intensive numerical
applications
n Many messages, much data

n System-level checkpoint is not as efficient as
application-level
n IBM’s BlueGene protein folding

n Sufficient to save positions and velocities of bases

n Alegra talk
n App. level restart file only 5% of core size

Our goal
n Develop a preprocessor that will transparently add

application-level checkpointing to MPI applications
n As easy to use as system-level checkpointing
n As efficient as user-specified application-level checkpointing

MPI source code,
no FT consideration

MPI source code
with app. level FT FT MPI application

our preprocessor native compiler

Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work

Sequential application state
n An application’s state consists of

n Program counter
n Call stack
n Globals
n Heap objects

n Similar in technique to PORCH
n Ramkumar, Strumpen (Iowa / MIT)

Example
main()
{

int a;
VDS.push(&a, sizeof a);
if(restart)

load LS;
copy LS to LS.old
jump dequeue(LS.old)

// …
LS.push(2);

label2:
function();
LS.pop();
// …
VDS.pop();

}

function()
{

int b;
VDS.push(&b, sizeof b);
if(restart)

jump dequeue(LS.old)
// …
LS.push(2);
take_ckpt();

label2:
if(restart)

load VDS;
restore variables;

LS.pop();
// …
VDS.pop();

}

Optimizations
n Where should we checkpoint?

n CATCH
n Li, Fuchs (Illinois)

n Memory exclusion
n Live/Clean/Dead variable analysis

n Plank, Beck, Kingsly (Univ. Tennessee)

n Recomputation vs. restoring
n Protein folding example

Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work

Supporting MPI applications

n It is not sufficient to take a checkpoint of
each individual process

n We need to account for the following
n In-flight messages
n Inconsistent messages
n Non-blocking communication
n “Hidden” MPI state
n At application level, message send/receive not

necessarily FIFO
n Process can use tags to receive messages out of order

In-flight and inconsistent messages

n m1 is in-flight (sent but not recvd)
n m2 is inconsistent (recvd but not sent)

P1

P2

m1
m2

recovery line

Non-blocking communication
n MPI allows for non-blocking communication

n Did the send happen before or after P2’s checkpoint was taken?
n If it happened before, it is consistent. If it happened after, it is

inconsistent.

I_send

? ?

P1

P2

“Hidden” MPI state
n Need to save and restore the state of

the MPI library
n This state is hidden from our

preprocessor
n Two kinds of hidden state

n Persistent - communicators, groups, etc.
n Not correct to take system-level ckpt

n Volatile - request objects (not handles)

Non-FIFO receive order
n Applications may receive messages in non-FIFO order

n Two messages from P2 to P1 will be received in send order only if
they have the same tag and communicator

n Most protocols assume FIFO

Send(tag = 1) Send(tag = 2)

Recv(tag = 1)Recv(tag = 2)
P1

P2

Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work

Beliefs
n Complexity of making program FT may

vary from program to program
n Not all programs will exhibit all the

problems described earlier

n FT protocol should be customized to
complexity of program
n Minimize the overhead of fault tolerance

Degrees of complexity

Parametric computing

Bulk Synchronous

Iterative Synchronous

MIMD(eg. Task parallelism)

Non-FIFO MIMD

Increasing
complexity
of protocol

Parametric computing
n Parametric computing, i.e. embarrassingly

parallel
Distribute work
Do work
Collect Results

n No communication in “Do work” area
n Can take uncoordinated checkpoints within

that area
n Each takes its own checkpoints

Bulk synchronous
n “Phase-step” model of computation

do work 1
barrier
do work 2
barrier
do work 3

n Communication and computation in “do work” areas

n Use blocking coordinated checkpointing, provided
n no messages cross the barrier
n no transient hidden state that crosses the barrier
n àrequires compiler analysis

Analysis problems
If(rank = 0)

send(1)
Else

send(0)

Barrier

If(rank = 0)
recv(1)

Else
recv(0)

If(rank = 0)
I_send(&r)

Else
I_recv(&r)

Barrier

Wait(&r)

Iterative synchronous
n Each process runs the same number of

iterations of a loop
for(i…)
{

Communicate
Compute

}

n Are there places where barriers can be
(safely) inserted?
n If so, treat as bulk synchronous

Analysis problem
For()
{
if(rank = 0)

x = 1
else

x = 2
if(x = 1)

Barrier?
}

For()
{
if(rank = 1)

recv

Barrier?

if(rank = 0)
send

}

Task parallel (e.g. producer /
consumer)
If(rank = 0)
{

while(not done)
send(DATA)

send(DONE)
}
Else
{

int x;
while(1)

recv(ANY_TAG)
if(tag = DATA)

x += f(DATA)
else

break
}

n There are no
interesting (useful)
places to insert
barriers
n Can’t use blocking

protocol
n Must use non-

blocking protocol

Non-blocking protocol
n Chandy-Lamport is a simple, well-known,

coordinated non-blocking protocol
n Assumes FIFO channels
n Initiator takes local checkpoint, and sends marker

to neighbors
n On receiving marker, process takes checkpoint

and sends its marker to neighbors
n After taking checkpoint, process P logs all

messages from process R, until R’s marker arrives
n These are in-flight messages

Example
n Process Q initiated the checkpoint.
n It logs all messages from P until P’s marker arrives
n On restart, Q “receives” from log until empty

In-flight, log Not in-flight

P

Q

Avoiding inconsistent messages
n No inconsistent messages, because P must take

checkpoint before sending or receiving more
messages

P

Q

Not allowed

CL for application-level checkpointing
n P cannot take a checkpoint as soon as Q’s marker arrives

n must wait until next checkpoint statement

n We will have inconsistent messages

Inconsistent message

In-flight message

P

Q

CL with delayed checkpointing
n Before checkpoint

n log count of all messages from R that arrive after R’s marker
arrived

n After checkpoint
n Log all messages that arrive from S until S’s marker arrives
n Log all non-deterministic choices made until all markers have

arrived

Log inconsistent count

Log in-flight

Log non-det

Analysis problem
n CL algorithm requires FIFO

n Program may not exhibit FIFO at
application level

n Compiler analysis to determine if
application exhibits FIFO

Non-FIFO

n After P takes a checkpoint
n On all in channels, its sends back Ids of “early messages”
n On all out channels, its sends count of messages in last epoch

n P starts logging non-determinism and “late messages” until
n It has received all “late messages”, and
n Sent all “early messages”

P

Q

Early msgLate msg

Intra epoch Intra epoch

Optimizations
n Redundantly stored data

n X stored on both P and Q

n Recomputation with distributed data
n X stored on P can be recomputed with data

stored on Q

Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work

Goal
n Goal: preprocessor adds application-level fault

tolerance to a standard MPI application
n For each application, it will attempt to use the

lightest-weight strategy that will work
n No communication crossing barriers
n No hidden state
n FIFO communication

n It might have to add necessary “management” code
n Bookkeeping for hidden state
n Handling in-flight messages
n Non-FIFO protocol

Status
n Completed

n Preprocessor can add FT to a block or iterative
synchronous MPI application
n Provided, that programmer specifies valid checkpoint

locations (safe barrier, no in-flight, no hidden state)

n In progress
n Determining those checkpoint locations
n Support for in-flight msgs

n Implementing modified CL protocol

n Add support for volatile hidden MPI state
n Implementing bookkeeping middle layer

n Analysis problems

